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Abstract 

Background: Automated brain volumetry has been widely used to assess brain volumetric changes that may indi-
cate clinical states and progression. Among the tools that implement automated brain volumetry, AccuBrain has been 
validated for its accuracy, reliability and clinical applications for the older version (IV1.2). Here, we aim to investigate 
the performance of an updated version (IV2.0) of AccuBrain for future use from several aspects.

Methods: Public datasets with 3D T1-weighted scans were included for version comparisons, each with Alzheimer’s 
disease (AD) patients and normal control (NC) subjects that were matched in age and gender. For the comparisons 
of the brain volumetric measures quantified from the same scans, we investigated the difference of hippocampal 
segmentation accuracy (using Dice similarity coefficient [DSC] as the major measurement). As AccuBrain generates a 
composite index (AD resemblance atrophy index, AD-RAI) that indicates similarity with AD-like brain atrophy pattern, 
we also compared the two versions for the diagnostic accuracy of AD versus NC with AD-RAI. Also, we examined the 
intra-scanner reproducibility of the two versions for the scans acquired with short-intervals using intraclass correlation 
coefficient.

Results: AccuBrain IV2.0 presented significantly higher accuracy of hippocampal segmentation (DSC: 0.91 vs. 0.89, 
p < 0.001) and diagnostic accuracy of AD (AUC: 0.977 vs. 0.921, p < 0.001) than IV1.2. The results of intra-scanner repro-
ducibility did not favor one version over the other.

Conclusions: AccuBrain IV2.0 presented better segmentation accuracy and diagnostic accuracy of AD, and similar 
intra-scanner reproducibility compared with IV1.2. Both versions should be feasible for use due to the small magni-
tude of differences.
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Introduction
Magnetic resonance imaging (MRI)-based brain volu-
metry has been increasingly used in the clinical settings 
to assess brain volumetric changes for a wide range of 
neurological diseases. Brain volumetric measures have 

been shown to be valid biomarkers of clinical state and 
progression by offering high reliability and robust infer-
ences on the underlying disease-related mechanisms [1]. 
Automated brain volumetry with software packages of 
brain segmentations has been widely applied due to its 
superiority in efficiency and reproducibility over manual 
segmentations.

Among the available tools for automated brain volumetry, 
AccuBrain (https:// www. brain now. net/ about- accub rain), as 
a commercial software package (cloud-based commercial 
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system) cleared with FDA (510(k) K202847) and CE mark 
that performs brain structure and tissue segmentation and 
quantification in a fully automatic mode, has shown bet-
ter accuracy (e.g., hippocampal segmentation), efficiency 
and inter-scanner reproducibility than the widely-used free 
package FreeSurfer [2, 3]. The brain volumetric measures 
derived from AccuBrain have also been used to identify 
brain structural changes in different neurological diseases 
(e.g., stroke [4], small vessel disease [5] and temporal lobe 
epilepsy (TLE) [6]), to evaluate postoperative outcomes (e.g., 
Cushing’s disease [7] and TLE with hippocampal sclerosis 
[8]), and to differentiate different dementias (e.g., vascular 
dementia from Alzheimer’s disease (AD) [9] and frontotem-
poral dementia from AD [10]). Specifically, AccuBrain also 
generates a composite index (i.e., AD resemblance atrophy 
index, AD-RAI) that assesses the similarity of brain atro-
phy pattern with AD based on the support vector machine 
model derived from an in-house training database [11], 
which has shown high consistency with clinical diagnosis 
and biological diagnosis of AD [12, 13].

Recently, AccuBrain underwent a substantial revi-
sion update (version 2.0—AccuBrain IV2.0), including 
an update in segmentation algorithms. In this study, we 
aimed to compare the recent version (IV2.0) with the 
previous version (IV1.2) in (1) segmentation accuracy, 
(2) diagnostic accuracy of AD with AD-RAI, and (3) 
intra-scanner reproducibility of brain volumetric meas-
ures, to provide suggestions of future use of AccuBrain 
in clinical applications.

Methods
Sources of data
ADNI
Data used in this work included subjects from the 
Alzheimer’s Disease Neuroimaging Initiative phase 
1 (ADNI-1) and phase 2 (ADNI-2) who had baseline 
diagnostic information and MRI scanning (https:// adni. 
loni. usc. edu/). The MRI scans were acquired from 1.5T 
scanners (magnetization-prepared rapid gradient echo 
[MPRAGE], for ADNI-1) and 3T scanners (MPRAGE 
or inversion recovery prepared fast spoiled gradient 
recalled [IR-FSPGR] for ADNI-2), with variable resolu-
tion around the target of 1.2 mm isotropically [14].  In 
this study, we randomly selected 200 normal control 
(NC) subjects and 200 AD patients who were matched 
in age and gender from the available data according to 
the information of clinical diagnosis from ADNI. Their 
MRI data were used to compare the performance of the 
two versions of AccuBrain in diagnostic accuracy of AD 
versus NC.

EADC‑ADNI
EADC-ADNI (http:// www. hippo campal- proto col. net/ 
SOPs/ index. php) is a globally harmonized protocol 
(HarP) for manual hippocampal segmentation based on 
magnetic resonance, which was developed by a task force 
from European Alzheimer’s Disease Consortium (EADC) 
and ADNI [15]. This project included 45 normal controls, 
45 mild cognitive impairment (MCI) patients and 45 AD 
patients, and their MRI data and manual hippocampal 
segmentations [16] were all used in this study. The MRI 
scans of these subjects were acquired from a mix of 1.5-T 
and 3.0-T clinical MRI scanners (using the MPRAGE or 
IR-SPGR technique) following the ADNI scanning proto-
col which are described elsewhere (http:// adni. loni. usc. 
edu/ metho ds/ docum ents/ mri- proto cols/) [14].

MIRIAD
MIRIAD (http:// miriad. drc. ion. ucl. ac. uk/) is a longitudi-
nal dataset that was designed to investigate the feasibility 
of using MRI as an outcome measure for clinical trials in 
AD treatments [17]. Participants were scanned at inter-
vals from 2 weeks to 2 years. All images were acquired on 
a single 1.5T scanner (GE) and the T1-weighted images 
were acquired using an IR-FSPGR sequence with a reso-
lution of 0.9 mm × 0.9 mm × 1.5 mm. Here, we used the 
data of the first scans of the baseline, 2 week and 6 week 
follow-ups for the analyses of intra-scanner reproducibil-
ity (n = 62, including 20 NC and 42 AD).

The clinical data of the involved datasets, i.e., (1) 
EADC-ADNI for evaluation of segmentation accuracy 
of hippocampus, (2) ADNI for assessing diagnostic accu-
racy of AD, (3) MIRIAD for intra-scanner reproducibil-
ity, are summarized in Table 1.

Image processing
Regarding the EADC-ADNI dataset where ground truths 
of hippocampal segmentations were provided, the hip-
pocampal labels were segmented manually once each 
by five qualified master tracers using standardized HarP 
guidelines for anatomical landmarks of the hippocam-
pus (http:// www. hippo campal- proto col. net/ SOPs/ LINK_ 
PAGE/ FINAL_ RELEA SE/ 02_ Appen dix- II_ HarP- UserM 
anual. pdf ) [16]. In detail, contours of the hippocampus 
were manually delineated using MultiTracer 1.0 (https:// 
www. loni. usc. edu/ resea rch/ softw are? name=  Multi 
Tracer) and the interior of the contour of each coronal 
slice was then filled using a custom Matlab routine to 
generate 3D labels of hippocampus [16].

Automated brain volumetry analyses were performed 
for all the included subjects from the three publicly 
available third-party datasets with AccuBrain® on 
T1-weighted [T1W] MRI scans. In detail, given the 
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T1W MRI data, several brain structures and three 
major brain tissues are segmented automatically based 
on prior anatomical knowledge specified by experi-
enced radiologists. The anatomical information is auto-
matically transformed into the individual brain. The 
absolute volumes were calculated from the segmenta-
tions of the specific brain structures and the relative 
volumes were calculated as the ratios of the absolute 
volumes by the intracranial volume (ICV) of the sub-
ject (% of ICV). A quantitative measure that follows 
the manner of visual rating scale of medial temporal 
lobe atrophy (i.e., QMTA) was also generated by Accu-
Brain, which is calculated by the ratio of inferior lateral 
ventricle (ILV) volume to hippocampal volume [12]. 
The lobar atrophy index generated by AccuBrain was 
defined by the ratio of cerebrospinal fluid (CSF) volume 
within a specific lobar region to the brain parenchyma 
volume within this lobar region [5, 18].The AD resem-
blance atrophy index (AD-RAI, ranging from 0 to 1), 
which indicates the similarity of the brain atrophy pat-
tern with AD, was also generated by AccuBrain [11]. A 
higher AD-RAI of an individual indicates greater simi-
larity to the brain atrophy pattern in AD patients. This 
composite MRI-based index was derived from the sup-
port vector machine model implemented in AccuBrain 
based on an in-house training database [11], with the 
brain volumetric measures quantified by AccuBrain as 
the predictors.

The brain volumetric measures as mentioned above 
were quantified with both AccuBrain IV1.2 and Accu-
Brain IV2.0, where the latest version incorporates 
updates in brain segmentation algorithm (indicat-
ing potential differences in brain volumetric meas-
ures between the two versions) while maintaining the 
same machine learning model for the calculation of 
AD-RAI.

Statistical analysis
Comparison of segmentation accuracy of hippocampus 
with EADC‑ADNI data
The spatial similarity between automatic hippocampal seg-
mentation of AccuBrain (IV1.2 or IV2.0) and manual seg-
mentation was evaluated with Dice similarity coefficient 
(DSC), which is calculated as twice the volume of intersec-
tion divided by the volume of the union. Numerical preci-
sion was measured with intraclass correlation coefficient 
(ICC) for a single rater using a two-way model for consist-
ency, as well as Pearson’s correlation. Bland–Altman plots 
were generated for the two versions of AccuBrain respec-
tively to illustrate the differences between AccuBrain and 
manual hippocampal segmentation. To investigate the 
significance of difference of the two versions of AccuBrain 
in hippocampal segmentation, paired sample t-tests were 
also performed to compare the DSC of segmentation of 
left and right hippocampus between AccuBrain IV1.2 and 
AccuBrain IV2.0 with manual segmentations as the refer-
ence method. This comparison was not only performed for 
the entire cohort, but also performed for the sub-cohorts 
as defined by the diagnosis results (NC, MCI and AD), 
field strength (1.5T and 3.0T) and manufacturers of the 
MR scanner (GE, Philips and Siemens).

Comparison of diagnosis accuracy for dementia using ADNI 
data
The receiver operating characteristic curve (ROC) analy-
ses were performed to evaluate the performance of AD-
RAI from AccuBrain IV1.2 and AccuBrain IV2.0 for 
differential diagnosis of AD (n = 200) versus NC (n = 200) 
using the ADNI data. The performances of the AD-RAI 
from different versions of AccuBrain were compared 
with DeLong test with respect to their area under the 
curves (AUCs) [19]. The default cutoff (i.e., AD-RAI > 0.5 
for AD) was applied to estimate the accuracy, sensitivity 
and specificity of the diagnosis for both versions.

Table 1 Characteristics and MRI measures of the used datasets

All the methods involved in this study were carried out in accordance with the Declaration of Helsinki

Involved analyses Dataset Age (years [range]) Female (n [%]) MMSE (range)

Segmentation accuracy of hippocampus EADC-ADNI

NC (n = 45) 76 (61–90) 22 (48.9) 29 (27–30)

MCI (n = 45) 75 (60–87) 19 (42.2) 27 (24–30)

AD (n = 45) 74 (63–90) 24 (53.3) 23 (19–26)

Diagnostic accuracy of AD ADNI

NC (n = 200) 75 (61–89) 88 (44.0) 29 (24–30)

AD (n = 200) 75 (59–90) 83 (41.5) 23 (19–27)

Intra-scanner reproducibility MIRIAD

NC (n = 20) 69 (58–86) 10 (47.6) 29 (27–30)

AD (n = 42) 69 (56–86) 26 (60.5) 20 (13–26)
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Comparison of reproducibility of brain volumetric measures 
using MIRIAD data
ICC values based on a two-way mixed effects model 
were calculated to test intra-scanner reproducibility for 
the brain volumetric measures of AccuBrain in different 
versions. In detail, we explored the intra-scanner repro-
ducibility of the automated brain volumetry for the scans 
with short-term intervals (baseline, 2 week and 6 week). 
These analyses were performed for absolute volumes, rel-
ative volumetric measures and AD-RAI, and for both NC 
and AD groups. The difference of ICC values between 
IV1.2 and IV2.0 for a specific brain volumetric measure 
was treated as significant if the point estimate of ICC in 
one version did not lie in the 95% confidence interval 
(CI) as mentioned in a previous study [20]. Considering 
the large number of volumetric measures explored for 
comparisons for both absolute and relative volumes, we 
further constrained this criteria of significance with the 
requirement that the point estimate of ICC in one ver-
sion should be larger than the upper limit of 95% CI of 
ICC in the other version by ≥ 0.005.

Results
Comparison of segmentation accuracy of hippocampus
In the comparison of the two versions of AccuBrain for 
hippocampal segmentation with manual segmentation as 
the reference, IV2.0 presented significantly higher DSC 
than IV1.2 (Table 2) either in the entire cohort (IV2.0 vs. 
IV1.2: 0.910 vs. 0.892 [p < 0.001] for left hippocampus, 
0.912 vs. 0.890 [p < 0.001] for right hippocampus, Table 2; 
Fig. 1) or in the subgroups (all with p < 0.001) defined by 
diagnosis, field strength or manufacturer (Table 2). Rep-
resentative hippocampal segmentation results were also 

shown in Fig.  2 to illustrate the superior performance 
of IV2.0 over IV1.2 regarding volume overlap. In terms 
of numeric precision, hippocampal volumes of Accu-
Brain IV2.0 presented stronger correlation with manual 
segmentation than that of AccuBrain IV1.2, with ICC 
of 0.989 (95% CI 0.984–0.992, p < 0.001) versus 0.955 
(95% CI 0.938–0.968, p < 0.001) for the left hippocam-
pus and 0.983 (95% CI 0.976–0.988) versus 0.941 (95% 
CI 0.918–0.957) for the right hippocampus. AccuBrain 
IV2.0 also presented higher Pearson’s r values for the hip-
pocampal volumes than AccuBrain IV1.2 (0.989 vs. 0.958 
for left hippocampus and 0.983 vs. 0.947 for right hip-
pocampus). Bland–Altman plots of absolute differences 
between AccuBrain and manual segmentation volumes 
(Fig. 3) showed general slight volume overestimation by 
AccuBrain IV1.2 (means of + 0.48 mL for bilateral hip-
pocampus), and AccuBrain IV2.0 presented even smaller 
overestimation (means of + 0.07 mL) while maintaining a 
similar ratio of outliers and smaller SD of volumetric bias 
compared with AccuBrain IV1.2 (0.33 mL vs. 0.65 mL).

Comparison of diagnosis accuracy for dementia with ADNI 
data
In the analyses of diagnosis of AD, AccuBrain IV2.0 per-
formed statistically better than IV1.2 (AUC: 0.977 vs. 
0.921, p < 0.001 with DeLong test). This difference was 
also visualized in Fig.  4 as the ribbons of 95% CI (i.e., 
shaded areas) of their ROC curves rarely overlapped. 
With the default cutoff (AD-RAI > 0.5 for AD), AccuBrain 
IV2.0 also presented higher accuracy (90.5% vs. 83.5%), 
sensitivity (94.0% vs. 84.5%) and specificity (87.0% vs. 
82.5%) than IV1.2.

Table 2 Mean DSC (SD) of AccuBrain IV2.0 and AccuBrain IV1.2 with manual hippocampal segmentation as reference method

The significance levels (p) of the paired sample tests for the entire cohort and specific sub-cohorts are displayed

DSC Dice similarity coefficient, NC normal control, MCI mild cognitive impairment, AD Alzheimer’s disease

Left hippocampus Right hippocampus

AccuBrain IV2.0 AccuBrain IV1.2 p AccuBrain IV2.0 AccuBrain IV1.2 p

All (n = 135) 0.910 (0.016) 0.892 (0.026) < 0.001 0.912 (0.018) 0.890 (0.033) < 0.001

Diagnosis

 NC (n = 45) 0.919 (0.015) 0.907 (0.019) < 0.001 0.921 (0.012) 0.904 (0.018) < 0.001

 MCI (n = 45) 0.910 (0.013) 0.889 (0.020) < 0.001 0.913 (0.015) 0.889 (0.029) < 0.001

 AD (n = 45) 0.902 (0.016) 0.880 (0.030) < 0.001 0.903 (0.021) 0.877 (0.041) < 0.001

Field strength

 1.5T (n = 68) 0.916 (0.014) 0.894 (0.026) < 0.001 0.913 (0.019) 0.890 (0.039) < 0.001

 3.0T (n = 67) 0.905 (0.017) 0.890 (0.026) < 0.001 0.911 (0.016) 0.890 (0.025) < 0.001

Manufacturer

 GE (n = 45) 0.912 (0.014) 0.894 (0.026) < 0.001 0.916 (0.013) 0.900 (0.023) < 0.001

 Philips (n = 44) 0.914 (0.015) 0.893 (0.023) < 0.001 0.916 (0.016) 0.888 (0.028) < 0.001

 S (n = 46) 0.905 (0.018) 0.889 (0.028) < 0.001 0.905 (0.021) 0.882 (0.042) < 0.001
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Comparison of reproducibility of brain volumetric 
measures using MIRIAD data
Regarding the analyses of intra-scanner reproducibil-
ity with short-term intervals, the point estimates of ICC 
values were all larger than 0.95 for absolute volumes and 

AD-RAI (Table 3) and generally larger than 0.90 for rela-
tive volumetric measures (Table  4). These two versions 
generally presented no significant differences for the ICC 
values for most brain volumetric measures in NC or AD. 
Nonetheless, IV2.0 presented significantly higher ICC 

Fig. 1 Distribution of dice similarity coefficients of hippocampal segmentations

Fig. 2 Sample hippocampal segmentation results of AccuBrain IV2.0, AccuBrain IV1.2 compared with manual reference together with original 
MRI slices. Hippocampal segmentations for Case 1 (aged 82 years, male, with normal cognition): DSC of 0.913 for AccuBrain IV2.0 and 0.894 for 
AccuBrain IV1.2; Hippocampal segmentations for Case 2 (aged 72 years, female, diagnosed with AD): DSC of 0.902 for AccuBrain IV2.0 and 0.849 for 
AccuBrain IV1.2. The displayed DSC values refer to accuracy of total hippocampal segmentation. The yellow arrows point to typical areas where the 
segmentation of AccuBrain IV2.0 is more consistent with manual reference than that of AccuBrain IV1.2
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than IV1.2 for brain parenchyma (relative volume), bilat-
eral hippocampus (both absolute and relative volumes), 
right frontal lobe atrophy, left occipital lobe atrophy, 
right temporal lobe atrophy, and bilateral parietal lobe 
atrophy in NC and for right hippocampus (both abso-
lute and relative volumes) in AD, while IV1.2 presented 
higher ICC than IV2.0 for gray matter (relative volume), 
right amygdala (both absolute and relative volumes), 

bilateral temporal lobe atrophy and right insular atrophy 
in AD.

Discussion
In this study, we investigated the influence of version 
update of AccuBrain (i.e., IV2.0 vs. IV1.2) in segmenta-
tion accuracy, intra-scanner reproducibility, and diag-
nostic accuracy of AD, which provided suggestions of 
AccuBrain for future use.

Regarding the segmentation accuracy, we compared 
AccuBrain IV2.0 and AccuBrain IV1.2 for hippocampal 
segmentation with manual segmentation as the reference 
standard, which was partly involved in a previous study 
which focused on the comparison of AccuBrain (IV1.2) 
with FreeSurfer using the same dataset [2]. Here, we 
found that IV2.0 presented significant increase of spatial 
accuracy (DSC) compared with IV1.2 for both left and 
right hippocampus and for both the entire cohort and 
the subgroups defined by diagnosis, field strength of MR 
scans or manufacturer of MR scanners (Table  2). This 
kind of improvements from the version update were also 
observed for numeric precision (ICC and Pearson cor-
relation), and absolute volumetric differences (less bias 
from manual results as shown in Bland-Altman plots, 
Fig. 3). Considering the better performance of AccuBrain 
IV1.2 than FreeSurfer in hippocampal segmentation 
as reported in the previous study [2], the superiority of 
AccuBrain over FreeSurfer would be further increased 
with the updates in AccuBrain IV2.0.

Regarding the diagnostic accuracy of AD with AD-RAI, 
AccuBrain IV2.0 presented significantly higher AUC 
than AccuBrain IV1.2 (0.977 vs. 0.921, Fig. 4). Here, the 
AUC of AD-RAI in AccuBrain IV1.2 (0.921) was in line 

Fig. 3 Bland–Altman plots for hippocampal volumes of AccuBrain IV1.2 (A) and AccuBrain IV2.0 (B) compared with those of manual segmentation. 
NC normal cohort, MCI mild cognitive impairment, AD Alzheimer’s disease

Fig. 4 ROC curves of AD-RAI for differentiation of AD from NC 
(shaded areas represent 95% confidence intervals for the ROC 
curves). The AUC of AD-RAI from AccuBrain IV2.0 was significantly 
higher than that from AccuBrain IV1.2 (the p value = 1.61e−08 for the 
comparison of the ROC curves with DeLong test)
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with a previous study where the older version of Accu-
Brain (IV1.2) was also used for clinical diagnosis of AD 
vs. NC in another dataset (AUC = 92%) [12]. As AD-RAI 
has also been used to identify early stages of AD with the 
older version of AccuBrain (IV1.2) [11], the improve-
ment of diagnostic accuracy of AD for AD-RAI in IV2.0 
may indicate its better performance for early detection of 
AD as AD-RAI depicts the similarity with AD-like brain 
atrophy pattern, although further validations are needed. 
Of note, the update of AccuBrain only involves improve-
ments of segmentation algorithms but not the machine 
learning model that generates AD-RAI. The improve-
ment of accuracy of AD-RAI in differential diagnosis 
(AD vs. NC) should result from the improved segmenta-
tion accuracy of the brain structures (e.g., hippocampus 
as indicated from this study). In fact, AD-RAI is gener-
ated by a machine learning model that includes the brain 
volumetric measures that are involved in AD-like brain 
atrophy, such as hippocampus and ILV [10], where the 
improvement of hippocampal segmentation accuracy 

has been demonstrated directly (Figs. 1, 2 and 3). In this 
regard, the previous studies that applied brain volumet-
ric measures of AccuBrain IV1.2 for differential diagnosis 
(e.g., vascular dementia vs. AD [9]) with machine learn-
ing models may also achieve better performance with the 
version update, while further validations are needed.

Regarding the analyses of intra-scanner reproducibil-
ity for scans with short-term intervals, AccuBrain IV2.0 
and AccuBrain IV1.2 generally showed similar ICC for 
most of the brain volumetric measures. Among the sev-
eral brain volumetric measures where the two versions 
presented significant differences in reproducibility, the 
results also did not favor one version over the other for 
either NC or AD population. In detail, IV2.0 presented 
higher ICCs in more volumetric measures than IV1.2 
(especially in NC group) for reproducibility of scans with 
short-term intervals (Tables 3 and 4). As most of the ICC 
values of both versions for either analysis of intra-scanner 
reproducibility were > 0.90 and that the largest difference 
between point estimates of ICC for the two versions was 

Table 3 ICC for intra-scanner reproducibility regarding absolute volumes and AD-RAI

The ICC values were displayed in terms of point estimate and 95% CI with lower and upper limits

*Significantly different based on point estimate of AccuBrain IV2.0 not lying within the confidence interval (CI) of AccuBrain IV1.2, where the point estimate of ICC for 
this version (labeled with *) is larger than the upper limit of 95% CI of the other version by ≥ 0.005

Absolute volumes NC (n = 20) AD (n = 42)

AccuBrain IV2.0 AccuBrain IV1.2 AccuBrain IV2.0 AccuBrain IV1.2

Intracranial volume 0.990 (0.979, 0.996) 0.995 (0.988, 0.998) 0.990 (0.983, 0.994) 0.996 (0.993, 0.997)

Brain parenchyma 0.99 (0.98, 1.00) 0.98 (0.96, 0.99) 0.99 (0.98, 1.00) 0.99 (0.98, 1.00)

White matter 0.97 (0.95, 0.99) 0.96 (0.92, 0.98) 0.97 (0.95, 0.98) 0.96 (0.94, 0.98)

Gray matter 0.99 (0.97, 0.99) 0.98 (0.96, 0.99) 0.97 (0.95, 0.98) 0.98 (0.97, 0.99)

Hippocampus L 0.98 (0.96, 0.99)* 0.91 (0.83, 0.96) 0.99 (0.99, 1.00) 0.99 (0.98, 0.99)

Hippocampus R 0.99 (0.97, 0.99)* 0.90 (0.80, 0.95) 0.992 (0.987, 0.996)* 0.977 (0.961, 0.987)

Amygdala L 0.95 (0.90, 0.98) 0.94 (0.88, 0.97) 0.98 (0.96, 0.99) 0.98 (0.97, 0.99)

Amygdala R 0.93 (0.87, 0.97) 0.94 (0.88, 0.97) 0.976 (0.961, 0.986) 0.991 (0.984, 0.995)*

Lateral ventricle L 0.999 (0.999, 1.000) 0.999 (0.998, 1.000) 0.999 (0.998, 0.999) 0.999 (0.999, 0.999)

Lateral ventricle R 0.999 (0.997, 0.999) 0.997 (0.995, 0.999) 0.999 (0.998, 0.999) 0.999 (0.998, 0.999)

Inf Lat Vent L 0.991 (0.981, 0.996) 0.976 (0.951, 0.990) 0.995 (0.992, 0.997) 0.995 (0.992, 0.997)

Inf Lat Vent R 0.976 (0.951, 0.990) 0.985 (0.969, 0.994) 0.993 (0.988, 0.996) 0.995 (0.991, 0.997)

Thalamus L 0.98 (0.96, 0.99) 0.98 (0.95, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99)

Thalamus R 0.98 (0.97, 0.99) 0.98 (0.96, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99)

Caudate L 0.99 (0.97, 0.99) 0.99 (0.98, 1.00) 0.99 (0.98, 0.99) 0.98 (0.97, 0.99)

Caudate R 0.99 (0.98, 1.00) 0.99 (0.98, 1.00) 0.98 (0.97, 0.99) 0.99 (0.98, 0.99)

Putamen L 0.98 (0.96, 0.99) 0.99 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99)

Putamen R 0.96 (0.93, 0.99) 0.96 (0.92, 0.98) 0.97 (0.95, 0.98) 0.97 (0.96, 0.98)

Pallidum L 0.96 (0.92, 0.98) 0.95 (0.90, 0.98) 0.96 (0.93, 0.98) 0.97 (0.94, 0.98)

Pallidum R 0.95 (0.91, 0.98) 0.96 (0.92, 0.98) 0.98 (0.97, 0.99) 0.97 (0.95, 0.98)

Midbrain 0.98 (0.96, 0.99) 0.97 (0.94, 0.99) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)

Pons 0.99 (0.98, 1.00) 0.99 (0.98, 1.00) 0.995 (0.991, 0.997) 0.996 (0.993, 0.998)

Cerebellum 0.99 (0.98, 1.00) 0.99 (0.98, 1.00) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)

AD-RAI 0.983 (0.965,0.993) 0.984 (0.967,0.993) 0.982 (0.970, 0.990) 0.979 (0.965, 0.988)



Page 8 of 10Zhao et al. BMC Medical Imaging          (2022) 22:117 

< 0.10, both IV1.2 and IV2.0 should be feasible for use in 
research or clinical settings with repetitive or follow-up 
scans on the same scanner.

There are several limitations that should be considered 
in this study. Firstly, the databases involved in this study 
were identified based on the cognitive status (i.e., NC 

and AD), and no other population, for example, those 
with lesions in the brain such as stroke, were enrolled for 
analysis. Although the investigations in this study may 
demonstrate the feasibility of both versions of AccuBrain 
for automated brain volumetry in populations with vari-
ous cognitive status, further validations are needed in 

Table 4 ICC for intra-scanner reproducibility regarding relative volumes

The ICC values were displayed in terms of point estimate and 95% CI with lower and upper limits

*Significantly different based on point estimate of AccuBrain IV2.0 not lying within the confidence interval (CI) of AccuBrain IV1.2, where the point estimate of ICC for 
this version (labeled with *) is larger than the upper limit of 95% CI of the other version by ≥ 0.005

Relative volumes NC (n = 20) AD (n = 42)

AccuBrain IV2.0 AccuBrain IV1.2 AccuBrain IV2.0 AccuBrain IV1.2

Brain parenchyma 0.97 (0.93, 0.99)* 0.91 (0.83, 0.96) 0.86 (0.78, 0.92) 0.87 (0.80, 0.92)

White matter 0.95 (0.89, 0.98) 0.90 (0.80, 0.95) 0.86 (0.78, 0.92) 0.79 (0.68, 0.87)

Gray matter 0.96 (0.93, 0.98) 0.93 (0.86, 0.97) 0.75 (0.63, 0.85) 0.87 (0.80, 0.93)*

Hippocampus L 0.98 (0.97, 0.99)* 0.89 (0.78, 0.95) 0.99 (0.98, 0.99) 0.98 (0.97, 0.99)

Hippocampus R 0.98 (0.97, 0.99)* 0.89 (0.78, 0.95) 0.99 (0.99, 1.00)* 0.97 (0.96, 0.98)

Amygdala L 0.94 (0.88, 0.97) 0.92 (0.84, 0.96) 0.97 (0.95, 0.98) 0.98 (0.97, 0.99)

Amygdala R 0.91 (0.83, 0.96) 0.95 (0.89, 0.98) 0.96 (0.93, 0.98) 0.99 (0.98, 0.99)*

Lateral ventricle L 0.999 (0.998, 1.000) 0.999 (0.997, 0.999) 0.999 (0.998, 0.999) 0.999 (0.998, 0.999)

Lateral ventricle R 0.998 (0.996, 0.999) 0.997 (0.993, 0.999) 0.999 (0.998, 0.999) 0.999 (0.998, 0.999)

Inf Lat Vent L 0.989 (0.978, 0.995) 0.973 (0.944, 0.988) 0.995 (0.992, 0.997) 0.995 (0.992, 0.997)

Inf Lat Vent R 0.973 (0.945, 0.988) 0.986 (0.970, 0.994) 0.992 (0.987, 0.996) 0.995 (0.991, 0.997)

Thalamus L 0.98 (0.96, 0.99) 0.97 (0.93, 0.99) 0.97 (0.96, 0.98) 0.98 (0.97, 0.99)

Thalamus R 0.99 (0.97, 0.99) 0.98 (0.96, 0.99) 0.98 (0.96, 0.99) 0.98 (0.97, 0.99)

Caudate L 0.99 (0.98, 1.00) 0.99 (0.98, 1.00) 0.98 (0.97, 0.99) 0.97 (0.95, 0.98)

Caudate R 0.99 (0.97, 0.99) 0.99 (0.98, 1.00) 0.976 (0.961, 0.986) 0.987 (0.979, 0.993)

Putamen L 0.99 (0.98, 1.00) 0.99 (0.99, 1.00) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99)

Putamen R 0.98 (0.96, 0.99) 0.98 (0.96, 0.99) 0.97 (0.95, 0.98) 0.97 (0.96, 0.99)

Pallidum L 0.98 (0.95, 0.99) 0.96 (0.91, 0.98) 0.94 (0.90, 0.96) 0.95 (0.91, 0.97)

Pallidum R 0.97 (0.94, 0.99) 0.97 (0.93, 0.99) 0.97 (0.94, 0.98) 0.95 (0.92, 0.97)

Midbrain 0.98 (0.95, 0.99) 0.97 (0.94, 0.99) 0.979 (0.966, 0.988) 0.989 (0.982, 0.994)

Pons 0.99 (0.98, 1.00) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)

Cerebellum 0.991 (0.981, 0.996) 0.997 (0.993, 0.999) 0.983 (0.972, 0.990) 0.991 (0.985, 0.995)

Frontal lobe atrophy L 0.948 (0.894, 0.977) 0.919 (0.839, 0.964) 0.940 (0.903, 0.965) 0.921 (0.873, 0.954)

Frontal lobe atrophy R 0.970 (0.939, 0.987)* 0.917 (0.835, 0.963) 0.924 (0.878, 0.956) 0.918 (0.868, 0.952)

Occipital lobe atrophy L 0.958 (0.915, 0.982)* 0.892 (0.790, 0.952) 0.932 (0.890, 0.960) 0.947 (0.914, 0.969)

Occipital lobe atrophy R 0.910 (0.823, 0.960) 0.868 (0.747, 0.941) 0.875 (0.802, 0.926) 0.928 (0.884, 0.958)

Temporal lobe atrophy L 0.970 (0.939, 0.987) 0.934 (0.868, 0.971) 0.918 (0.869, 0.952) 0.965 (0.942, 0.980)*

Temporal lobe atrophy R 0.976 (0.951, 0.990)* 0.876 (0.760, 0.944) 0.914 (0.862, 0.950) 0.966 (0.944, 0.980)*

Parietal lobe atrophy L 0.972 (0.941, 0.988)* 0.918 (0.837, 0.964) 0.968 (0.947, 0.981) 0.977 (0.962, 0.987)

Parietal lobe atrophy R 0.975 (0.948, 0.989)* 0.907 (0.817, 0.959) 0.973 (0.955, 0.984) 0.973 (0.955, 0.984)

Cingulate lobe atrophy L 0.976 (0.949, 0.989) 0.971 (0.939, 0.987) 0.949 (0.916, 0.970) 0.966 (0.943, 0.980)

Cingulate lobe atrophy R 0.980 (0.959, 0.992) 0.968 (0.935, 0.986) 0.948 (0.915, 0.970) 0.948 (0.915, 0.970)

Insular atrophy L 0.985 (0.969, 0.994) 0.970 (0.939, 0.987) 0.899 (0.838, 0.940) 0.942 (0.905, 0.966)

Insular atrophy R 0.972 (0.942, 0.988) 0.960 (0.918, 0.983) 0.945 (0.910, 0.968) 0.981 (0.969, 0.989)*

Cerebellum atrophy 0.943 (0.885, 0.975) 0.901 (0.806, 0.956) 0.930 (0.886, 0.959) 0.921 (0.872, 0.954)

QMTA L 0.988 (0.976, 0.995) 0.969 (0.937, 0.987) 0.995 (0.991, 0.997) 0.994 (0.990, 0.997)

QMTA R 0.98 (0.95, 0.99) 0.98 (0.96, 0.99) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)
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patients with other neurological diseases. In addition, 
although we demonstrated that both versions presented 
good and comparable intra-scanner reproducibility, 
inter-scanner reproducibility was not tested due to the 
lack of available data. Further validations are needed to 
compare the two versions of AccuBrain regarding their 
volumetric measures quantified on different scanners 
(e.g., with different manufacturer or field strength).

In conclusion, AccuBrain IV2.0 performed significantly 
better than IV1.2 in hippocampal segmentation and diag-
nostic accuracy of AD vs. NC, while both versions should 
be feasible for use as the magnitude of difference between 
their performances was not large. In addition, our find-
ings suggest no significant differences between versions 
or favor one version over the other regarding the intra-
scanner reproducibility from different MRI scans on the 
same scanner.
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